Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Tetraaquabis(3,5-dicarboxybenzoato-O)cobalt(II)

Nathalie Guillou, Carine Livage,* Jérôme Marrot and Gérard Férey

Institut Lavoisier, UMR CNRS 8637, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, F-78035 Versailles, France Correspondence e-mail: livage@chimie.uvsq.fr

Received 6 July 2000 Accepted 7 September 2000

The hydrothermal reaction of cobalt(II) chloride with trimesate (3,5-dicarboxybenzoate) ions in aqueous solution gives the novel title complex, $[Co(C_9H_5O_6)_2(H_2O)_4]$. The Co^{II} ion lies on an inversion centre and is octahedrally coordinated to two trimesate anions and four water molecules. Hydrogen bonds ensure the three-dimensional architecture of the structure.

Comment

Over the last decade, significant research effort has been focused on the use of organic molecular building blocks to

generate three-dimensional porous solids via hydrogen bonding or copolymerization of metal ions (Palmans et al.,

Figure 1

A view of complex (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

metal-organic compounds

1997; Livage *et al.*, 1998, 1999). Trimesic acid (benzene-1,3,-5-tricarboxylic acid, TMA) has been successfully used by several authors to design organic supramolecular networks (Kolotuchin *et al.*, 1999; Sharma & Zaworotko, 1996; Melendez *et al.*, 1996). Its geometry and hydrogen-bonding capability (three carboxylic acid groups) make it an interesting tool for crystal engineering. Condensation of TMA with metal

Figure 2

(a) A view of one layer in (I) showing the network of hydrogen bonding and (b) a projection of the structure of (I) along [010] showing the stacking of the trimesate layers. Dotted lines correspond to hydrogen bonds.

ions was first developed by Yaghi *et al.* (1996, 1997, 1998) to generate coordination polymers (Chui *et al.*, 1999; Chui, Los *et al.*, 1999; Daiguebonne *et al.*, 1999; Li *et al.*, 1999). Herein, we describe the synthesis and crystal structure of a new cobalt(II)–TMA complex, (I), and demonstrate that this species can be used as a synthon to generate supramolecular networks.

The centrosymmetric structure of (I) is shown in Fig. 1 with the atom-labelling scheme. Two monodentate carboxylate groups and four water molecules octahedrally coordinate the Co atom. Each trimesate ligand presents one bonding and two pendant protonated carboxylate groups, leading to a single negative charge on the ligand. The TMA⁻ anion and two of the coordinated water molecules lie in planes, the Co atom being located between these planes. A network of strong hydrogen bonds (Table 2), between TMA⁻ ions, and between TMA⁻ ions and water molecules, provides the basis of this two-dimensional network (Fig. 2*a*). The Co atom ensures the three-dimensionality of the architecture by linking adjacent layers (Fig. 2*b*).

These results illustrate the clear tendency of trimesate complexes to pack into planes in order to maximize hydrogen bonding. The solid-state arrangement is therefore dominated by the formation of trimesate layers, as previously described for lanthanide complexes by Daiguebonne *et al.* (1999).

Experimental

Complex (I) was hydrothermally synthesized from a mixture of cobalt(II) chloride hexahydrate, trimesic acid, potassium hydroxide and water in the molar ratio 1:1:1:60. The starting mixture was heated for 12 h at 453 K under autogenous pressure (final pH = 2). The resulting solid phase, consisting of pink needles of (I), was filtered off and dried at room temperature.

Crystal data

erystat aata	
$[Co(C_9H_5O_6)_2(H_2O)_4]$ $M_r = 549.26$ Monoclinic, $P2_1/c$ a = 5.1160 (1) Å b = 13.0080 (2) Å c = 15.1890 (1) Å $\beta = 96.853$ (1)° V = 1003.59 (3) Å ³ Z = 2	$D_x = 1.818 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 5763 reflections $\theta = 2.07-29.77^{\circ}$ $\mu = 0.946 \text{ mm}^{-1}$ T = 296 (2) K Needle, pink $0.76 \times 0.14 \times 0.08 \text{ mm}$
Data collection	
Siemens SMART 1K diffractometer ω scans Absorption correction: semi- empirical (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.533, T_{max} = 0.928$ 6860 measured reflections	2590 independent reflections 2281 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 29.77^{\circ}$ $h = -6 \rightarrow 7$ $k = -17 \rightarrow 14$ $l = -20 \rightarrow 19$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.073$ S = 1.090 2590 reflections 179 parameters H atoms treated by a mixture of independent and constrained refinement	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.042P)^{2} + 0.0785P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick, 1997) Extinction coefficient: 0.031 (2)
rennement	Extinction coefficient: 0.031 (2)

Table 1

Selected geometric parameters (Å, $^{\circ}$).

2.1117 (9) 2.0720 (9)	Co1-O8	2.1107 (10)
90.52 (4) 88.24 (4)	O7-Co1-O8	88.86 (4)
	2.1117 (9) 2.0720 (9) 90.52 (4) 88.24 (4)	2.1117 (9) Co1-O8 2.0720 (9) 90.52 (4) O7-Co1-O8 88.24 (4)

Table	2
-------	---

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O4-H4A\cdots O2^{i}$	0.82	1.80	2.589 (2)	161
O6−H6A···O3 ⁱⁱ	0.82	1.81	2.631 (2)	175
$O7-H7A\cdots O5^{ii}$	0.80(2)	1.95 (3)	2.740 (2)	168 (2)
$O7 - H7B \cdot \cdot \cdot O1^{iii}$	0.86(2)	1.89 (2)	2.748 (2)	175 (2)
$O8-H8A\cdots O2^{iv}$	0.87 (2)	1.86 (3)	2.726 (2)	177 (2)
Summatry and a (i)) w 1 w	· (ii) 2 × 1	L 1 - (iii) 1	

Symmetry codes: (i) -x, 1-y, -z; (ii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) 1+x, y, z; (iv) -x, 2-y, -z.

H atoms from the water molecules were found *via* difference Fourier maps and isotropically refined. H atoms from the trimesate molecules were treated as riding (O–H = 0.82 and C–H = 0.93 Å). All H-atom positions (trimesate and water) could be deduced from difference Fourier maps. However, H atoms from the trimesate were placed in calculated positions in order to have perfect sp^2 geometry.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1105). Services for accessing these data are described at the back of the journal.

References

- Chui, S. S.-Y., Los, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 238, 1148–1150.
- Chui, S. S.-Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194-196.
- Daiguebonne, C., Guillou, O., Gérault, Y., Lecerf, A. & Boubekeur, K. (1999). Inorg. Chim. Acta, 284, 139–145.
- Kolotuchin, S. V., Thiessen, P. A., Fellon, E. E., Wilson, S. R., Loweth, C. J. & Zimmerman, S. C. (1999). *Chem. Eur. J.* 5, 2537–2547.
- Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature, 402, 276– 279.
- Livage, C., Egger, C. & Férey, G. (1999). Chem. Mater. 11, 1546–1550.
- Livage, C., Egger, C., Nogues, M. & Férey, G. (1998). J. Mater. Chem. 8, 2743– 2747.
- Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215.
- Palmans, A. R. A., Vekemans, J. A. J. M., Kooijman, H., Spek, A. L. & Meijer, E. W. (1997). J. Chem. Soc. Chem. Commun. pp. 2247–2248.
- Sharma, C. V. K. & Zaworotko, R. J. (1996). J. Chem. Soc. Chem. Commun. pp. 2655–2656.
- Sheldrick G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Siemens (1994). SHELXTL. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861– 2868.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.
- Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096-9101.